

Style Transfer for Chinese Fonts

Chang-Yen Tseng

Yi Lyu

Pei-Chieh Lo

Outline

- Problem / Motivation
- Background
- Approach / Implementation
- Result
- Conclusion / Discussion

Ŵ

Problem / Motivation

- Good handwriting have visual arts value and commercial values
- Need to learn for years to simulate the handwriting from famous calligraphists
- However, there are more than 80,000
 Chinese characters

Background (style transfer / GAN)

- Style Transfer Adopt destination's appearance to source's image.
- Existed Approaches GAN
- Train two models simultaneously
 - Generator: create fake images
 - Discriminator: tell reals apart from fakes
- Notable variants
 - DCGan
 - Pix2pix
 - CycleGAN
 - ...

Pix2pix (1/2)

- Image-to-image translation with a conditional GAN(cGAN)
- Paired

Pix2pix (2/2)

- Require "pixel to pixel" mapping
- Work well if the style is not significantly different
- Unusable in the writing style case

Approach – Implement Cycle GAN

- Image-to-image translation
- Unpaired

winter \rightarrow summer

Approach – Implement Disco GAN and Cycle GAN

• Same:

- Learn cross-domain relations given unpaired data
- trained on the fundamentals of reconstruction loss and use forward, backward cycle consistency loss to achieve bijective mapping
- Difference:
 - Different model structure
 - Different loss function (mse vs I1)

) (6

Dataset

- We prepared 5 different style of fonts
- Each contains the same ~1500 characters
- All tests attempt to transfer from style A to others

Missing Stroke

Broken Stroke

Dual GAN

- Generator adopt U-shaped net structure.
 - Share low-level information
 - Keep the alignment of image structures
- Discriminator: employ Markovian PatchGAN
 - Keep independence between pixels distanced beyond a specific patch size
 - Effective in capturing local high-frequency

Figure 1: Network architecture and data flow chart of DualGAN for image-to-image translation.

Source Style: 客 汉 杉 材 役 渡

Result – DualGAN

缺客汉王卡洗机 Real

缺事以王卡洗机 Cycle 缺客议下卡洗 机 Disco 汉干一 Dual work well in these two

Ours

- Still use the basic structure and models of CycleGAN
- Use DiscoGAN's mse lost function
 - since it's more sensitive to shape changes
- Introduce "true loss" to the lost function
 - True loss: MSE compared to the ground truth
- Preprocessing
 - Random Flip
 - Convert to gray scale

Result - Ours

Conclusion

- Our goal: Transfer style in the Chinese font domain
- Test on well-known algorithm pix2pix does not perform well
- Implement CycleGAN and DiscoGAN Acceptable performance
- Modify CycleGAN to get the best result in our case

Future Work

- Quickly learn new style by using existing model
- Transfer font style from one language to another

Thanks!